Minimizing the Inter-vehicle Distances of the Time Headway Policy for Platoon Control on Highways
نویسندگان
چکیده
Heavy traffic on highways requires the optimization of inter-distances between vehicles in order to reach time performance and to provide safety solution in transport. Variable spacing and constant spacing are the two policies for the longitudinal control of platoon. Variable spacing doesn’t require a lot of data (position, speed...) from other vehicles, and string stability using only on-board information is obtained. However, intervehicle distances are very large, and hence traffic density is low. Constant spacing can offer string stability with high traffic density, but it requires at least data from the leader. In this paper, a novel expression of the variable spacing policy has been proposed. It is effective to decrease the distance between the cars, to become nearly equal to the constant spacing policy. It also enables increasing the string stability and the robustness of the control regarding to unmodeled lags, and it can avoid control torque saturation. This novel approach doesn’t require heavy communication between the cars. The new control law has been evaluated by simulation with perfect system using Matlab, and with imperfect system using TORCS. The good results have demonstrated the effectiveness of the novel approach.
منابع مشابه
Modified flatbed tow truck model for stable and safe platooning in presences of lags, communication and sensing delays
Many ideas have been proposed to reduce traffic congestion problems. One of the proposed ideas is driving in platoon. Constant spacing policy is the most important control policy. It increases traffic density, but it needs very reliable communication channel. Driving with a constant time headway between vehicle is also well known policy and robust control law, but the inter-vehicle distances ar...
متن کاملInternal and string stability analyses of longitudinal platoon of vehicles with communication delay and actuator lag under constant spacing policy
This paper studies the longitudinal control of a group of vehicles following a lead vehicle. A neighbor based upper level controller is proposed by considering communication delay and actuator lag. Constant spacing policy is used between successive vehicles. Two different approaches based on Lyapunov-Razumikhin and Lyapuniv-Krassovski theorems are presented to stability analysis...
متن کاملA new virtual leader-following consensus protocol to internal and string stability analysis of longitudinal platoon of vehicles with generic network topology under communication and parasitic delays
In this paper, a new virtual leader following consensus protocol is introduced to perform the internal and string stability analysis of longitudinal platoon of vehicles under generic network topology. In all previous studies on multi-agent systems with generic network topology, the control parameters are strictly dependent on eigenvalues of network matrices (adjacency or Laplacian). Since some ...
متن کاملThird-order Decentralized Safe Consensus Protocol for Inter-connected Heterogeneous Vehicular Platoons
In this paper, the stability analysis and control design of heterogeneous traffic flow is considered. It is assumed that the traffic flow consists of infinite number of cooperative non-identical vehicular platoons. Two different networks are investigated in stability analysis of heterogeneous traffic flow: 1) inter-platoon network which deals with the communication topology of lead vehicles and...
متن کاملNeural Adaptive Sliding-Mode Control of a Vehicle Platoon Using Output Feedback
This paper investigates the output feedback control problem of a vehicle platoon with a constant time headway (CTH) policy, where each vehicle can communicate with its consecutive vehicles. Firstly, based on the integrated-sliding-mode (ISM) technique, a neural adaptive sliding-mode control algorithm is developed to ensure that the vehicle platoon is moving with the CTH policy and full state me...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013